Search results

Search for "Boltzmann transport theory" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • Gibbs2 code [54] by considering lattice vibrations. To calculate the thermoelectric properties, we used the Boltzmann transport theory employed in the BoltzTrap2 [55] code by utilizing the rigid band estimation under a constant relaxation time. Results and Discussion Structural properties We have
  • understand the thermoelectric (TE) response and applicability of the cubic π-SnSe alloy, we employed the semiclassical Boltzmann transport theory to determine the Seebeck coefficient (S), the electrical conductivity (σ/τ), as well as the electronic part of the thermal conductivity (κe/τ) by applying the
PDF
Album
Full Research Paper
Published 05 Oct 2021

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • , China 10.3762/bjnano.10.199 Abstract We have investigated the thermoelectric properties of a pristine MoO3 monolayer and its defective structures with different oxygen vacancies using first-principles methods combined with Boltzmann transport theory. Our results show that the thermoelectric properties
  • oxygen vacancies leads to a sharp peak near the Fermi level in the density of states. This proves to be an effective way to enhance the ZT values of the MoO3 monolayer. The increased ZT values can reach 0.84 (x-axis) and 0.12 (y-axis) at 300 K. Keywords: Boltzmann transport theory; first-principles
  • cm2·V−1·s−1 [17]. Therefore, it is of profound significance to explore the thermoelectric properties of MoO3 monolayers and discuss the effect of O vacancies on it. Computational methods In this work, we evaluate the thermoelectric properties of a MoO3 monolayer by Boltzmann transport theory and first
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • dielectric matrix, which are subject to an intergranular electronic coupling due to a finite tunneling probability between the crystallites or grains. The binary systems Pt–Si and Pt–Co discussed previously fall into this class. For nanogranular materials the semiclassical approach of Boltzmann transport
  • theory is not applicable since disorder does not simply cause scattering but must be included in the theoretical analysis from the beginning. A recent theoretical review on the electronic transport properties of granular metals can be found in [12]. The electrical transport within the metallic grains can
PDF
Album
Video
Review
Published 29 Aug 2012
Other Beilstein-Institut Open Science Activities